県民経済計算早期推計の問題点

荒木英一*

1. はじめに

地域の経済統計では、四半期ベースのマクロ統計が事後的な確報値として利用できず、計量経済分析を行う上で障害となっている。

もちろん、観測不能の四半期値を推計する試みは従来からなされてはいるが、県民経済計算早期推計、いわゆる「地域QE」に代表されるように、リンク・チャウ法とよばれるノンサーベイ手法によって補間・外挿される場合が多い。これは、観測不能の四半期値を、全国同項目データの動きに基づいて推計するものであるが、地域独自の景気動向を反映していないという指摘をしばしばうけている。

小論では、近年、景気動向指数の作成などに試用されている状態空間モデルの推計手法を応用して、QEの代表的な指標である民間最終消費について、観測不能の四半期値を、月次ベースの地域経済統計の情報に基づいて推計することを試みた。まったく違う方法による推計を行ない、推計値を対比させてみることで、従来からの早期推計手法の妥当性を検討するとともに、地域独自の景気動向に関して何らかの示唆を得ることが目的である。

以下、2節では、地域QEの推計方法を題材にして、従来の方法と問題点を整理する。3節では、この問題点を検討するために小論で設定したモデル

* 小論は、1993年4月理論計量経済学会西部部会報告資料に加筆したものである。また小論の内容は、国際比較統計研究会（神戸大学経済経営研究所、1996年6月）において報告された。

1）地域QE（Quick Estimation）とは、地域経済の景気動向を四半期ベースで総合的に把握するために、とくに県民経済計算の総支出面に関して、消費や投資などのマクロ変数の動きを早期推計しようとするものである。
をまず示し、全国四半期系列の実測値をもとにモデルの良否を確認した後に、大阪府四半期系列の推計を試みる。

2. 地域 QE の推計方法と問題点

民間最終消費の場合を例にとると，従来の典型的な地域 QE の推計方法は次のようである。

1. 地域年次値 Y を全国同項目の年次値 \bar{Y} に回帰させる。この推計結果を (2.1) とする。

$$Y = \hat{\alpha_o} + \hat{\beta_o} \bar{Y} + \hat{u}_o$$

(2.1)

2. 次の (2.2) によって，地域四半期値 Z の推計値 \hat{Z}_1 をうる（Z は全国四半期値）。

$$\hat{Z}_1 = \hat{\alpha_o}/4 + \hat{\beta_o} \bar{Z} + \hat{u}_o/4$$

(2.2)

3. \hat{Z}_1 を \bar{Z} に回帰させる。この推計結果を (2.3) とする。

$$\hat{Z}_1 = \hat{\alpha} + \hat{\beta} \bar{Z} + \hat{u}$$

(2.3)

4. 全国において，Z の速報値が公表された後に，次の (2.4) によって，地域経済の四半期速報値 \hat{Z} を算定する。

$$\hat{Z} = \hat{\alpha} + \hat{\beta} Z$$

(2.4)

図 1 に，この方法によって推計された大阪府名目民間最終消費の四半期値と，全国同項目実測値とを，前年同期比成長率ベースで比較したものを示す。

この方法は簡便ではあるが，(2.2, 2.4) から，あるいは図 1 からもわかるように，推計された当該変数の山と谷は，全国同項目のそれとはほぼ一致する。したがって，もし地域変数が全国同項目と異なる独自の動きをするものならば，この方法による推計には難点が生じるだろう。

2) このときに，たとえば国民所得の全国四半期値を説明変数に加えたり，誤差項の系列相関を考慮するといった工夫がなされることがある。
3) 1971年度から1993年度までのデータを用いて推計した (2.1) は

$Y = 1374520 + 70.6454 \bar{Y}$

$R^2 = 0.9988$，$DW = 0.4186$

これより (2.2) によって大阪府四半期系列を求めた。
たとえば、「大阪経済はジェット機の後輪」（井田 [1994]、落ちる時には全国より早く落ち、立ち上がる時には全国より遅く立ち上がる）という従来からよく語られる命题があるが、公表された全国と地域の景気動向指数を対比させて見ると、山と谷が一致することはむしろ稀であると推測できる。こうした景気の波のずれを (2.1) 式のような年次ベースの回帰でとらえることは難しいという指摘が以前からなされてきた。あるいは、\(\hat{\alpha} \) が正（負）ならば、日本経済全体が拡張を続けるときに、当該地域のシェアは \(\hat{\beta} \) の値に向けた個々が低下（増加）し続けることになり、地域の四半期ベースでの前年同期比成長率は、ほぼ恒常的に、全国のそれと下回って（上回って）いることになる。トレンドとしては確かにそうであっても、実際の地域と全国経済との関わりは、この方法が想定するほどに、時間を通じて一様なものであるとは、必ずしも言えないだろう。

このような課題から、リン・チャウ法による年データの四半期分割法は地域独自の景気動向を十分に反映しないという指摘がしばしばなされてきた。もちろん、こうした課題を改善しようとする試みも多かったが、
といえば、速報値の改善のために、地域に固有の月次データの情報を利用して予測式の推計を行うといった方法が考えられる。

(2.4) より、特に速報値に関しては、上の難点がより発明にあらわれる。つまり、地域四半期速報値の動きの山と谷は全国のそれと比べて一致し、\(\alpha \) が正（負）ならば地域の四半期ベースでの前年同期比成長率は常に全国のそれを下回る（上回る）。以下の推計は、(2.3)(2.4)を変更することでこうした難点を改良し、同時に、地域 QE の速報性を高めようとしたものである。

1. 従来のリン・チャウ法の(2.1)から(2.2)を踏襲して、地域経済の四半期系列 Z を作成する。

2. 例えば、Zの一階階差 z に次のようなモデルを想定して推計を行う。

 \[z_t = \beta_0 + \beta_1 z_{t-1} + \beta_2 z_{t-2} + \beta_3 z_{t-3} + \beta_4 z_{t-4} + f(W_t) + \varepsilon_t \] \((2.5) \)

 ここに、\(W_t \) は、地域経済固有の速報性の高い月次データである。

3. 直近の Z に、z の外挿予測値を加えていくことで、地域経済の四半期速報値を算定する。

この方法は、速報性を確保しつつ 4)，地域独自の景気変動を速報値に反映させようとしたものである。(2.5) 式は、地域マクロ変数の変動を基本的には自己回帰モデルによってとらえようとするものであるが、地域に固有の経済変動を反映する月次データを参照することにより説明力を高めようとしている 5)。

しかし、こうした改良型推計においても、予測式 (2.5) の推計に用いられたデータは、リン・チャウ法 (2.1, 2.2) により、全国同項目にほぼ比例させるかたちで作成されたものであり、基本的な問題は解決されていないこと

4) 地域月次データは約二か月遅れて公表され、全国四半期データ（速報値）は約三か月遅れで公表されるので、先の方法に比べて約一か月ほど速報時期が早くなる。

5) 塩崎 [1993] では、四半期系列については \(\Phi(L)z_t = v_t \)、月次系列については \(\Psi(L)m_t = u_t \) のような自己回帰式を考え、各々の誤差項 \(v_t \) と \(u_t \) が同時点相関するものと想定して、後の月次系列回帰式の推計残差を四半期系列回帰式の説明変数に加えて (2.5) の推計を行なっている。が、より直截に、月次系列（を四半期化したもの）と四半期系列との Error Correction Model を推計する等の作業も考えうるだろう。
に注意が必要である。もし、（2.1, 2.2）によって作成された原データ値が地域独自の景気動向を反映していないものならば、それにに基づいて推計された改良型の予測式も意味のないものとなる。

以下では、地域独自の月次情報を利用した原データの作成を試みてみよう。従来いはまったく違った角度からの原データ作成を試みるとことによって、リン・チャウ法（2.1, 2.2）により作成された原データがどの程度妥当なものであるかを検討してみることが、主たる目的である。

3. 月次情報を利用した原系列の推計

ある変数の第 t 年の第 i 四半期値を c(t, i), 第 t 年の値を c(t) とする。c(t) は観測可能だが c(t, i) は観測不能である。しかし、c(t, i) の動きを（部分的にでも）反映する観測可能な四半期変数が n 系列存在するとして、それらを y_j(t, i) (j=1, 2, ..., n) とする。地域の民間最終消費を例にとると、この四半期データ値 c(t, i) は不明だが、たとえば百貨店売上高、家計調査の世帯消費データや消費者物価指数など、これの動きと高い相関をもつと考えられる月次情報がいくつか利用可能である。こうした月次系列を四半期集計したものを y_j(t, i) と考える。また c(t, i) は、季節変動等のために、4 期のラグに強い自己相関をもつものとする。

\[c(t) = c(t, 1) + c(t, 2) + c(t, 3) + c(t, 4) \]

\[y_j(t, i) = \theta_j c(t, i) + \varepsilon_j \quad (i=1, 2, 3, 4) \]

\[c(t, i) = \beta_j c(t-1, i) \]

ここで \(\varepsilon_j \sim N(0, \sigma^2) \) は i.i.d.。

\(I_k \) を k 次単位行列、\(O_k \) を k 次のゼロ（列）ベクトルとして、(3.1)(3.2)

6) たとえば、すぐ後に変数として採用する、民間最終消費支出の年度内配分比の場合には、（全国データを用いると）次のような OLS 結果がえられる。

\[
\begin{align*}
 c &= 0.933121 c(-4) \\
 & \quad (65.0917) \quad R^2 = 0.983519 \\
 c &= -0.270396 c(-1) - 0.269932 c(-2) - 0.276329 c(-3) + 0.669390 c(-4) \\
 & \quad (-3.14874) \quad (-3.21361) \quad (-3.34564) \quad (65.0917) \quad R^2 = 0.986211
\end{align*}
\]
(3.3) を状態空間表現にあらためると

\[Y(t) = Z\alpha(t) + v \] \hspace{1cm} (3.4)

\[\alpha(t) = \beta I_4 \alpha(t-1) + u \] \hspace{1cm} (3.5)

\[v \sim N(O_{n+1}, V) \] \hspace{1cm} (3.6)

\[u \sim N(O_4, q_0 I_4) \] \hspace{1cm} (3.7)

ここに

\[Y(t) = [c(t), y_1(t, 1), \ldots, y_n(t, 1), y_1(t, 2), \ldots, y_n(t, 2), y_1(t, 3), \ldots, y_n(t, 3), y_1(t, 4), \ldots, y_n(t, 4)]' \]

\[\alpha(t) = [c(t, 1), c(t, 2), c(t, 3), c(t, 4)]' \]

\[
V = \begin{pmatrix}
0 & O_{4n}' \\
O_{4n} & \begin{pmatrix}
q_1 & 0 & \cdots & 0 \\
0 & q_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & q_n
\end{pmatrix} \otimes I_4
\end{pmatrix}
\]
このモデルを尤推計してみよう。

まず、全国の名目民間最終消費の四半期系列 \(CP(t, i) \) はもちろん観測可能であるが、この実測值を上のモデルによる推計値と比較することにより、特定方法と推計の精度を検討してみる。

観測可能な情報 \(y_1 \) として家計調査の勤労者世帯消費支出 \(HCP \) を用い、つきのように変数を定義する。

\[
c(t, i) = CP(t, i) / CP(t) - 0.25 \quad i = 1, 2, 3, 4 \\
y_1(t, i) = HCP(t, i) / HCP(t) - 0.25 \quad i = 1, 2, 3, 4 \quad (3.8)
\]

この設定のもとで、（3.8）によって計算される \(y_1(t, i) \) の実測データ値を与えて、推計を行なった（データとして用いたのは1971年第2四半期から1995年第1四半期まで）。

推計によって得られた \(c(t, i) \) の推定値 \(\bar{c}(t, i) \) に年次データ値 \(CP(t) \) を乗じて、四半期系列の水準値の推定値 \(CP(t, i) \) を算定できる。

\[
\bar{CP}(t, i) = \bar{c}(t, i) + 0.25 CP(t) \quad (t = 1971, \ldots, 1995, \ i = 1, 2, 3, 4)
\]

（3.9）

図2に、こうして算定された四半期推計値を、実測値と前年同期比成長率

7）推計方法については、北川 [1993], Hamilton [1994] などを参照。
8）たとえば、代表的家計は、予想年間所得のもとで年間消費可能総額を見積もった上で四半期毎の配分比を決めていると考えてみる。今四半期の消費配分比は主として前年同期の消費配分比実績値に依存するが、予想年間所得の見積もり誤差などのために独立した係数が加わると想定している。

しかし、この変数の選択は実は望ましいものではない。（3.7）の前提が満たされないと考えられる。この点の改訂は今後の課題としたい。
9）推計では、さらに \(q_0 \leq q_1 \) という制約を加えて、0.000001＜\(q_0 \leq 0.11, q_0 \leq \beta_1 \leq 0.11, \ 0.8 \leq \beta_4 \leq 1.0, \ 0.8 \leq \theta_1 \leq 1.3 \) の範囲でグリッドサーチでパラメータの初期点を定めた後に、DFP 法によって最大点を求めた。DFP 法については Fair [1984] を参照。
で比較したものを示す。前年同期比成長率で見ると、推計誤差は、最大で2.3％、最小で−3.42％、絶対差平均（MAE）は0.76％であり、実測値と推計値の相関係数は0.9843である。

上のように、全国データを用いた推計結果は比較的良好と思われるので、\(y_t(t, i) \) として大阪府の家計調査消費支出を用いて、それ以外はまったく同様の設定の下で、大阪府に関する推計を行なった（データとして用いたのは1971年度第2四半期から1995年度第1四半期まで）。

図3は、これにより推計された大阪府民間最終消費の四半期系列と、全国民間最終消費支出の四半期実測値系列とを、前年同期比成長率で比較したものである。総じて、大阪の消費の伸びは全国のそれを下回る（年度実測値のシェアは低下しつづけるが、シェア低下の様子はもちろん単調的なものではない。76年第3四半期、78年第3四半期、81年第2四半期、83年第2四半期、88年第2四半期の前後には、消費の回復の遅れ、あるいは全国に比してより大きな落ち込みや低迷がみられる。前述した「大阪経済シェット機の後輪」という名題の当否は確認できないものの、この景気実感は、こうした消費（すなわち所得）の低迷に一因を見いだすことができるのではないかろうか。

ただし、こうした落ち込みは、第一次石油危機前後、第二次石油危機前後を別にして、従来からのリン・チャウ法（2.1, 2.2）によってもとらえられていることに注意したい。図4は、従来からのリン・チャウ法（2.1, 2.2）による地域四半期推計値と、本文の方法によるそれとを、前年同期比成長率で比較したものである。消費はQEのなかでも特に推計が良好なものと言われるが、両推計の差異は、前年同期比成長率で見ると、最大で2.21％、最小で−2.78％、絶対差の平均（MAE）は0.67％である。これは、消費に関しても、リン・チャウ法による推計に大きな致命的欠陥がないことを示すものとみることができるであろう。
図3：民間最終消費：前年同期比成長率（%）での比較
大阪推計値（Osaka-Estimated）と全国実測値（Japan-Actual）

図4：民間最終消費：前年同期比成長率（%）での比較
—リンク・チャウ法による大阪推計値（QE）と
本節モデルによる大阪推計値（Estimated）—

4. 結び

地域経済では、消費や投資といったマクロ統計の四半期データが確報値と
して利用できず、計量経済分析を行う上で不便を感じることが多い。これを
補うために、地域 QE（県民経済計算早期推計）作成作業などにおいては、
従来から、リン・チャウ法と呼ばれる簡便なノン・サーベイ手法によって、
観測不能の四半期値を推計してきた。しかしこの手法は、基本的に全国同項目の四半期系列の動きに基づいて地域四半期系列を推計するものであり、地域独自の景気動向を反映していないという難点が以前から指摘されていた。
地域 QE の推計方法を改良しようとすると試みは多くなされているが、予測式
推計のための原データがそもそもリン・チャウ法により作成されている点に
注意が必要である。

本報告では、地域独自の月次系列の情報を利用して、原データとなる地域
四半期系列の実際推定を試みた。モデルの良悪を確認するために、まず全国
データにもとづいて推計を行い、得られた全国四半期系列の予測値を既知の
実測値と比較する作業を行った後に、地域データに基づいて地域四半期系列
の推計を行なっている。

マクロ消費の場合には、月次情報として家計調査の勤労者世帯消費支出を
用い、一定の推計結果が得られるものと考えるが、これを見る限り、消費に
関しては、従来からのリン・チャウ法に大きな致命的欠陥があるとは考えに
くい。リン・チャウ法の簡便性をあわせて勘案すると、この結論は、リン・
チャウ法により作成された原データに基づく地域 QE 推計の妥当性を、ある
程度支持するものと言えるだろう。

ただし、小論のモデルは、きわめて限定された枠組みの下での、ひとつの
ノン・サーベイ手法の試みであり、消費に関しては一定の推計結果を得るこ
とはできたものの、設備投資をはじめとして、残る県民経済計算の支出項目
に関する推計作業は、今後の課題として残されている。

こうした項目についても、適当な月次変数の情報を利用することでマクロ
変数の四半期推計が可能となるならば、従来からのリン・チャウ法による推
計を補完する有用な情報になりうる。利用可能な地域月次変数の中から適当
な変数を見出すことは困難に見えるが、もとより、観測不能の変数の推計に
は、サーベイ手法の併用が欠かせない。設備投資や在庫投資などの変数についても地域独自の動きを捕捉していくためには、たとえば、ある程度細分化した産業別実測値の積み上げ作業などを併用していくことが有効と考えられる。

引用・参考文献

・荒木英一 [1993]
 「県民経済計算早期推計の問題点」
 1993年4月、理論計量経済学会西部部会報告資料
・井田憲計 [1994]
 「地域経済の景気循環と景気転換点の把握ー近隣地区景気動向指数による分析ー」
 1994年8月、産業研究集（大阪府立産業開発研究所）
・大日康史 [1992]
 「日本における確率的景気指標の開発」
 1992年9月、経済学論集（同志社大学）
・加納悟・斎藤栄美 [1993]
 「景気実感と景気動向指数」
 1993年9月、理論計量経済学会報告資料
・北川源四郎 [1993]
 『FORTRAN77 時系列解析プログラミング』
 1993年3月、岩波コンピュータサイエンスシリーズ
・後藤真智子・大川勉、他 [1990]
 『大阪府民所得統計の四半期別早期推計（QE）に関する報告書』
 1990年、大阪府・大和銀総合研究所
・谷崎久志 [1993]
 『状態空間モデルの経済学への応用』
 1993年11月、日本評論社
・Fair, Ray C. [1984]
 Specification, Estimation, and Analysis of Macroeconometric Models
 1984, Harvard University Press
・Hamilton, James D. [1994]
 Time Series Analysis
 1994, Princeton University Press