On Canonical Functions and Conformal Mappings
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Abstract Another formulation of the existence theorem of canonical (meromorphic)
functions on open Riemann surfaces is shown. Geometrically it implies that for given
integer n>max(2g, 1) and a point p of Riemann surface R of genus g(0<g<wo) there
exist a pair of conformal mappings (normalized at pole p) of R to an n-sheeted cover-
ing surface with vertical or horizontal slits respectively. Besides, a certain integral
formula for locally canonical functions is obtained.

Introduction

This paper contains a certain supplement and development of our former paper
[6] and actually treats with canonical differentials and functions on general open
Riemann surfaces.

In section 2, §1 we introduce a notion, called modification, for square integrable

differentials on open Riemann surfaces and show the existence and construction of
the modification for basic those differentials. By using these results we shall prove an

integral formula, Proposition 3, which is slightly general than a formula stated in [ 6]
without proof. Section 5, §3 contains main theorem. The essential part of this exis-
tence theorem was accomplished in [4] and [ 6], however we shall give here another
formulation showing a generalization of the classical canonical conformal mapping
theorem.

The theory of canonical functions is still infancy for Riemann surfaces of infinite
genus. The final paragraph exhibits some examples of those surfaces, which give a
few informations concerning the canonical functions.

§1. Modification of square integrable differentials

1. Preliminaries First of all we recall briefly some definitions and notations. By R
we denote an arbitrary open Riemann surface. For two square integrable differentials
w;, w; on R the inner product is given by

(@1, wy)=(wy, wz)R=JVJ‘ a)l/\*(:)z
R

where generally *o stands for the conjugate differential of w. Let I'(=I'(R)) be the
Hilbert space of square integrable real differentials on R with above inner product.
The following subspaces of T' are fundamental : T';=Cl/{w€T'| w is of class C” and closed,
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i. e. do=0}, C!/ being the closure taken in T. T,=Cl{dfeT|f is a C=-function}, T,,=
Cl{df|f is a C=-function with compact support on R}. It is known [3] that T,,=
{dp|p is a Dirichlet potential on R}. I',={weT |w is harmonigc, i. e. do=d*w=0}, T).=

{weI‘,l|a) is exact, i.e. the period fw of v along every closed curve y on R is zero},
T

I‘m:{wel‘h]w is semi-exact, i.e. fw=0 along every dividing curve y on R}, and I,
T

=the orthogonal complement (in I';) of *T',,, where *T',,,={w]|*0wel},}. Every ele-
ment of I',, is also characterized as the limit of harmonic measure differentials. The
following well-known orthogonal decomposition theorems will be used :

I'=T,+T,,+*T,,
I‘Ic=11h+]:‘eo; Pe=rne+reo;
(cf. [1], [5DD.
2. By an end V of R we mean here a non-compact subregion of R whose relative
boundary dV on R is a dividing curve. For studies of the boundary behavior of dif-
ferentials in I" we introduce the following notion.

DEFINITION Let T, be a subspace of T and V be an end of R. For wel', we call a
differential o in T, the modification of w (relative to V) if there exists a differential o,
el’,, such that

(1 5:{ o+ w, m VicV

W, in R—V,
where V' is a neighborhood of the ideal boundary to V. In the case wcT . (V) (space T,
defined on V) we call  on R satisfying the condition (1) the extended modification of w
to R.

Without loss of generality we may choose V' as an end contained in V so that G=

V—(V'UoV") is a ring domain. Then one can find a C=-function p on R such that
p=1 on V', and p=0 on R-V.

If necessary, we shall take peC= so that its domain being non-constant is included in
a smaller ring domain G’ in G.

Note that in general o, in (1) is not identically zero, for instance, if w,=0 for we
I',cT,, then v would be identically zero. While, w, does not influence the boundary
behavior on V of o, since, roughly speaking, w, tends to zero towards ideal boundary.

PROPOSITION 1 Let V be an end of Riemann surface R and T'.(V)=T,. (V) or T',,. (V).
Then for every wel' (V) there exists the extended modification of w fo R.

Proof Let weTl,,. (V). Since dV is a dividing curve, v can be written as w=du

with a harmonic function # on ring domain G above. Define @ by

won V'
w=1 d(ou) on G=GUIG
0 on R—V.

Then @el,NC=, hence by orthogonal decomposition it is written as @ =0 +w,, with



€T, and w,=dfel,,nC~ because I',,NC cl,NC=T7(={dfel|feC~}). To see aE

Tss, take the homology basis {yi}:i-i,s,... of dividing curves on R so that y,=aV

and 7;(¢>2) lie in R—G. Then any dividing curve 7 is homologous to Xlc;7; and
-

f&}:z_: cff ®=0, obviously fa’f:O, consequently ‘f&:O, i. e. weTly,, and it is the
7 1 Tt 7 T )
extended modification of w with w,=—w,,.

The case wel',, (V) is treated similarly and we have only to show that f&}:O for
T

every non-dividing curve y on R. This is easily seen as one can choose homology
basis of non-dividing curves so that they do not meet G.

PROPOSITION 2 Let T, be any one of the subspaces Ty, Trse, Tam and T, T, then for
.every <L, there exists the modification  of w relative to an end V, and it is uniquely
determined for the first three spaces. Furthermore, when w=dw belongs to any one of the
spaces Ty, Thm and TN CHV) (1<k< ) o is given by o=d(ow)+w, for some w,&T,,,
where w is a function harmonic or of class C'(V) respectively.

Proof The cases I',=T",, or I';,, are already proved, because the restriction to V
of such weT, belongs to I',(V). Next,
1°) Let w=dweTl,,.. Then there is a sequence {w,} of harmonic measures with respect
to a canonical exhaustion {R,}([1]1) of R such that

[ldw, —dw||z, — 0 (n—>0), dw, €T rn(R,).

Consider the continuous extension w, of w, onto R such that w,=w, on R, and w,
is constant on each component of R—R,. Evidently ||dw,—dw|| — 0 (n—c0) and we may
suppose {&),,} converge to w uniformly on every compact set on R. By orthogonal
decomposition of dw,eT', we have

(2 dw,=du,+dwd, du,eTls,, dwleT,,
It is noted that du,€T,,, because for any #€*I',,, we have (du,, 0) = (dw, —dw?, 6) =
(dw,, 0)=(dw.,, 0)z=0 since dR, consists of dividing curves hence 6&€*T,,,(R,). Next,

define ¢, by
(3) 0, =d(pi0,) =d(pu,) +d(pws)

and consider the orthogonal decomposition of d(pu,)el’.NnC=:
(4) d(ou,) =dv, +dw}, dv,Tl’y,, dwieT,,NC".

One can prove dv,€T,, as before. It is also proved as follows. For m>n let u, , be
the harmonic measure on R, having the same boundary value as u?n|R,,,, then lim #, n
m—> oo

=u,. Moreover let v, , be the harmonic measure on R, having the same boundary
value as p#, ., then we find that lim dv,,»=dv, €T n. Putting

m—r o

(5) w=lim ¢,(=d(ow)),

n—x

then w=w on V’, =0 on R—V. Now we note that {dv,} and {dw}}, {d(ow3)} are Cauchy
sequences in T, and T, respectively. Obviously {(dw,) is a Cauchy sequence. Since

T,. is orthogonal to T',,, we have from (2) |Ia'&;,,—dz;zm||2=]|du,,—dum1|2+Hdw?,—dw,?,llﬁ,



hence {du,} and {dw} are Cauchy sequences. Moreover {z:;n} and {#,}, (hence {w3})
converge uniformly on every compact set on R. Since ||d(ou,)—d(ou,)||?=||d(o(%t,—
un)) ||+ ||dtty —dun| |} - and ||d(o(un — ) ||e || (U — ttn)dpl|c + ||0(doty, — dun)|| s, We know
that {d(pu,)} forms a Cauchy sequence, so do {dv,} and {dw}i} from (4). Writting

lim dv, =, lim d(wi+pwd) = —w,,

n—+ n—+o

then @ €T, w,ET T and o= —w,, i.e. o is the modification of .
2°) Let weT,,. By definition there is a sequence {df,} with C~-functions f, with
compact support, for which ||df,—w|| =0 (n—c0). Let u, be harmonic functions on
ring domain G having the same boundary values as f,|s. Then

(6) [|dfw—dfulle=||d%, —dun||e (Dirichlet principle).
Let £, be functions on R defined so that f,=f, on V'U(R—V) and=u#, on G. Then f,
are continuous and ||df,]|<eo. From (6) {du,) forms a Cauchy sequence in TI',,(G)
and {#,} converge to a harmonic function # uniformly on every compact set on G,
particularly on a smaller ring domain G’(G’cG) for which we may suppose p=0 or
1 on G'—G. Hence {d(pf,)} is a Cauchy sequence in T,, and o= lim d(pf,,,)el‘eo gives
a modification of o with w,=0, because @=w on V' as ||a)-—a~)||,,,ngﬁltlnw——df,,||w+|]df,.—
o||y»—0. The same reasoning is valid for weT,.

Finally when 0T ,,nCx¥(V), it can be written as w=df, with a Dirichlet potential
foon R which is of C¥+t on V. Then 5=d(pfo)el‘wnck, because pf, is a Wiener poten-
tial and ||w!|<eo (cf. Hilfssatz 6. 4., Bemerkuhg, s. 84 [3D).

§ 2. Locally canonical functions

3. A meromorphic differential ® on Riemann surface R is said to be canonical ([ 4],
[5]) if @ has at most a finite number of poles and its real part is expressed in a
neighborhood of the ideal boundary of R as

7 Rew=0+0, o€T,, o,

A (single-valued) meromorphic function f on R is said to be canonical if df is canon-
ical differential. By localizing the condition (7) we defined in our former paper [6 ]
the locally canonical functions, namely, for an end V of R a meromorphic function
defined on V=V UaV is said to be locally canonical on V if Re df is written as (7)
in a neighborhood V’(cV) of the ideal boundary to V. Obviously a canonical function
on R is locally canonical on every end of R. For a locally canonical function f on V
we have the following formula

(8) \ldf|l3= Jf rdf,

where the integration is taken along oV in the positive direction with respect to V.
This result was stated in [ 6] without detailed proof. Here we shall prove a slightly
general formula, from which (8) follows.

PROPOSITION 3 Let u be a harmonic function defined on end V which is written as
du=oc+c, with c €Ty, 0,€T,, in a neighborhood V'(CV) of the ideal boundary to V.



Then for any harmonic differential o on V such that ||o||,<co and *w is semi-exact on
V, we have

(9) (du, w)yzf u *o.

Proof Consider a canonical exhaustion {R,} of R, then by Green’s formula on V,
=VNR,

(du, w>yu=f »u*w+f 4 *o,
v n

where y,=0R,NV is contained in end V'’ for large n>N. Hence it suffices to show
that the last integral tends to 0 as #n—oo. First one can write u=v+f, with dv=c and
dfy=0,(€C") on V'. Applying Proposition 1 and 2 to V’ instead of V we get the ex-
tended modification 6 of §=*weTl,, (V) and the modifications &, o, of ¢ and o,
namely, 6<T,,. and for some o,el,, 8—w,=0 in V', =0 on R—V, and cd€T)n, o—0,

=d(pv) for some w,€T,, and Eozd(pfo)eI‘wOC“. It follows that
[ wo=[ (ov+ory@-a0
n 8Rn

:_(}—'wl'l-;o: *0_*(')0)12"_)0) n—oo,

because I';, and T',, are orthogonal to both *I';,, and *I,,.

COROLLARY 1 Let f be a locally canonical function holomorphic on V, and g a holo-
morphic function on V with finite norm ||dg||,. Then we have

a0 df, dgy=2if VRefc7§=i U+Pds,

In particular, we have formula (8) if f=g.

Proof Since (dh, dg)y=2(Re dh, dg), holds generally for any holomorphic function
h with ||dh||,<eo, it is sufficient to show that (du, dg)sz'f udg for u=Ref. Now
av

dg=w+i*0, where w=d Re g and *w are both harmonic, exact together with their
conjugates, hence Proposition 3 implies

(du, a)),,=f u*w, (du, 1*0)y=—i(du, *a))yzz'f Uuw,
v 14

2

therefore (du, dg),,=if u(w—i*0)=i| wudg. Taking f=g in(10), (8) is obtained as

v oV

Javfd7=-%-favdf2=0.

COROLLARY 2 Let F be a canonical function on R with a finite number of poles {p,}
and h a holomorphic function with finite norm |\dhl|, then

an (dh, dF)=—2z Y, Res Fdh,
J by
where the left hand side is the Cauchy’s principal value of integral. In the case where iF
is canonical,

(dh, dF) =2z Y Res Fdh.
7
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Proof Choose ¢>0 so that disc e-neighborhoods U,;(¢) of p; are disjoint each other
and let R,.=R—|JU,(e). It is also easy to find a finite number of ends {V,} of R such
j N

that R—\J V, is a compact subregion containing |J U;(¢). Then F is locally canonical
k 7
on each V,, hence by Green’s formula and above Corollary we have easily

(dh, dF),=(@F, i, =i % | (F+F)dn
J

au y(e)

=—27 3 Res Fdh+0(e).
j  bi
Letting e—0, (11) is obtained.

§ 3. Canonical differentials and functions

4. The existence of canonical functions is known from Riemann-Roch theorem on
open Riemann surfaces [4], but we want to show here another version of existence
theorem. For this aim we need the following fact, for which we shall give new proof

(cf. [2], [8D.

LEMMA Let o be a semi-exact canonical differential on Riemann surface R of genus

g(<eo), then
deg(w) < 2¢g-2.

Proof Denoting by n,(«, R') the number (counted with multiplicities) of a-points
(a=0, ) of w on subregion R’ of R, then deg(w)=#n,(0, R)—P, where P=#,(, R)<
oo, Take a canonical exhaustion {R,} of R, where 90R, consists of dividing analytic
curves. First fix a subregion R, which contains all poles of » and is of genus g. It
is known [ 4] that w=df can be approximated by semi-exact canonical differentials
o,=df, on R, which have the same singularities as w and Re f, take actually con-
stants on dR,, and hence w—w, converge to zero uniformly on every compact subset
of R. Therefore by argument principle we see easily that

7,0, Ky)<04,0, Ry)<00,0, Ry,
provided m(>n) is sufficiently large. Now choose a subregion R, of R, so close to R,
that f,, is single-valued on every ring domains of R,—R,, (note that w, is semi-exact)
and o, has no zeros there. Then by Gauss-Bonnet theorem on R},

I :
Hn0, RY=P=—{  dargdfuty(R),

where y(R,)=2g+[/,—2 is the Euler characteristic of R,(and of R,), [, being the
number of contours {r;} of R,. As Re f, is constant on each contour of dR,, the
image f,(0R,) consists of closed curves, each of which turns around a vertical slit
at least once in the negative direction (positive with respect to f,(R.)), hence

Q@r)-t dargdf, <—I, It follows that for any »

RN
n,(0, R,)—P < 2g-—2.
Letting n—co, we have the conclusion.
5. Let M(p~*) and D(»p*) denote the real vector spaces of canonical functions and



semi-exact canonical differentials on R which are the multiple of divisor p~* and p»
respectively. By Riemann-Roch theorem for open Riemann surface of genus g(<eo)

we have
a2) dim M(p=*)=dim D) +2(n—~g+1).
While for n>2g—1, dim D(»")=0 by Lemma, hence .
12)’ dim M(p~")=2(n—g+1), n>2g-1.

In particular dim M(p~") —dim M(p~»9)=2, n>2g, so that one can easily find lin-
early independent canonical functions f,, f. with pole p of order » and a local para-
meter z at p (p<2=0) for which they are normalized in the form

13) Fi@D=1/zr 4o, f,(R)=i/2m+ weee
Note that in the case g=0 we have only to take the semi-exact canonical differentials
o;=df; with above singularities, which always exist and become exact on R. Combin-

ing these facts with Theorems 1 and 4 in [ 6], the following theorem is obtained.

MAIN THEOREM Let p be any point of open Riemann surface R of genus g(<oo) and
n>max(2g, 1). Then on R there exist two canonical functions fi, f» which have a pole
only at p of orvder n and normalized there. In other words, f, and f,=—if, give respec-
tively the vertical and horizontal slit conformal mappings of R, more precisely, f, and f,
take every complex values exactly n times except a set E of 2-dimensional measure zero,
and each component of E is a vertical resp. horizontal slit (possibly a point) on the com-
blex plane, further f,, fo have a pole at p of order n and the normalized expansions of
the form z—»(1+4----- ) in terms of a local parameter z at p. '

Remark Since dim M(p~—wtV)>4, there is non-constant vertical or horizontal slit
mapping of R with a pole p of order at most g+1. While, above theorem states the
existence of a pair of normalized slit mappings with pole p of same given order n>
max (29, 1), which shows a complete generalization of classical parallel slits mapping
theorem including Riemann’s theorem of conformal mapping.

To get the canonical functions with a pole of lower order we need an analog of
classical Weierstrass’ gap theorem. Concerning this we give just a comment. From
(12) dim D(p* 1) —2<dim D(p") <dim D(p*-1), and as dim D(p°)=2g we have dim D(p")
>2(g—n), 0<n<g, where the equality holds also for =1 by (12). Note that

14) dim D(p)=2(g—n) for n=2, «---- , g
if and only if there does not exist canonical functions with pole p of order at most
g. Such a point is called non-Weierstrass point and the set E of those points is known
to be dense in R, actually all points of R except a real analytic set belong to E [7].

Question : Does the case

15) dim D(p™) =dim D) —1, i. e. dim M(P*) —dim M(p~»-0) =1
occur for some # with 2<n<2g—1°?

§4. Remarks to the case of infinite genus

6. Contrary to the case of finite genus, little is known about the existence of canonical



functions on Riemann surface R of infinite genus. Here we provide some remarks
relevant to this problem in specific surfaces. According to Theorem 1 in [6],
Riemann surface permitting a nonconstant canonical function is conformally equivalent
to a finite sheeted covering surface over C. The converse is not true as follows.

EXAMPLE 1. Let S be a two-sheeted covering surface over C with an infinite num-
ber of branch points {a,} which cluster only to «. Consider a disc D lying on the
upper sheet, then R=S—D is of genus o and does not permit canonical functions
with a pole lying outside of D and its lift. Indeed, let f be such function, then f is
bounded in neighborhood of «« (Th. 1, [6]) hence by well-known Myrberg’s argu-
ment f takes the same value on two sheets and becomes a meromorphic function on
C, in particular, f is regular in D and transfers its boundary dD to a vertical seg-
ment, which is a contradiction.

While, there are Riemann surfaces of genus oo which permit canonical functions,

namely,

ExaMPLE 2. Take a surface S above and delete from S a finite number of vertical
slits not containing {a,} and let R be the resulting surface. Then for each #n, f(2)=
1/(z—a,) is lifted to canonical function on R with pole a, of order 2.

EXAMPLE 3. Let G be a plane domain including co. By using two copies of G we
make a two sheeted covering surface R with an infinite number of branch points
{a,} G which accumulate only to co. Then,

(i) for any point pe{a,} and positive integer m there are vertical and horizontal
slit mappings F, and F, having p a pole of order 2m, where their expansions in local
parameter f vat p are of the form

f2m4 (reg. function of %).
Moreover there does not exist non-constant canonical function with pole pe{a,} of
odd order.

(ii) for any pe {a,}, dim M(Pp—™)=2, m>1.

These facts imply that the case (15) does not occur for this surface.

Proof (i) There exist semi-exact canonical differentials w,, w, on G having the
singularity d(1/(z—p)™), d(i/(z—p)™) at p respectively. As G is planar, w; and w, are
exact and their integrals f,, f. are canonical functions on G. Then F,, F,, the lifts of
f1 and —if, onto R, have the property in (i). Next, canonical function f on R with
a pole p takes the same values on two sheets and becomes a meromorphic function
on G. Hence the order of pole at branch point p must be even.

(ii) For p&{a,}, M(p™™) always consists of constants, because its member never fail
to have another pole at the lift of p.

7. REMARK Suppose a Riemann surface R permits the vertical and horizontal slit
mapping F,, F, with a pole p of order 2. This is the case, for instance any Riemann
surface of genus 1 or above examples of genus g(<). Choosing a suitable local

parameter z at p, they are written as



Fi(2)=z1+ %} a2, Fo(2)=z2+ka '+ % b,z
n=0

n=0

at p. For any holomorphic function 2z on R with [|dk||<c which has the expansion

h(z)= %cnz” at p, we have by Corollary 2
n=0

(dh, dF)=—4nc,, (dh, dF,)=4rc,+2zke,.

Thus if we consider as usual the functions

W=%<F2—F,>, @=-§—<F1+F2>

we have (dh, d¥)=4nc,+nkc,, (dh, dD)=rkc,. Now it is interesting the case 2=0. Then
¥ is holomorphic and ||d¥||< e, hence taking A=¥

l|d¢||2:4n(b2—a2),

which implies b,—a, is real, non-negative and Rea,=Reb, if and only if F,=F,+ const.
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