ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 紀要論文
  2. 桃山学院大学経済経営論集
  3. 59(4)

機械学習を活用したテキストマイニング : クチコミを用いた商品・サービスカテゴリーの横断分析

https://stars.repo.nii.ac.jp/records/8915
https://stars.repo.nii.ac.jp/records/8915
55b998de-2546-48e5-ae76-ac24deb7a66f
名前 / ファイル ライセンス アクション
101_竹岡志朗.pdf 竹岡志朗 (1.4 MB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2018-02-28
タイトル
タイトル 機械学習を活用したテキストマイニング : クチコミを用いた商品・サービスカテゴリーの横断分析
タイトル
タイトル Text Mining using Machine Learning : Cross-sectional Analysis of Products/Service Categories using Reviews
言語 en
言語
言語 jpn
キーワード
主題Scheme Other
主題 機械学習
キーワード
主題Scheme Other
主題 分散表現
キーワード
主題Scheme Other
主題 テキストマイニング
キーワード
主題Scheme Other
主題 fasttext
キーワード
主題Scheme Other
主題 クチコミ
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
著者 竹岡, 志朗

× 竹岡, 志朗

WEKO 1105

竹岡, 志朗

ja-Kana タケオカ, シロウ

Search repository
TAKEOKA, Shiro

× TAKEOKA, Shiro

WEKO 1106

en TAKEOKA, Shiro

Search repository
抄録
内容記述タイプ Abstract
内容記述 In recent years, AlphaGo developed by google has become a topic not
only in the world of Go but also in society, words related to AI such as
machine learning and deep learning are becoming widely recognized.
Advances in these technologies are quick, and discussion about medical
assistance AI which applies image recognition technology is active, and it is
expected to be applied in various fields even now. As an application
possibility to management research and management practice,
improvement of natural language processing technology in recent years,
especially progressive technology concerning distributed representation,
can be said to be a fully usable technology.
And, it is not a direct competition relationship like a smartphone and a
digital camera, www (world wide web) and a book, which is a threat of
substitute in Porter’s 5force analysis, that is, competitive relations beyond
product categories are topics.
In this paper, we consider a recent social change and propose a method
to analyze and visualize competing relationships beyond the categories of
goods and services by machine mining using machine learning (AI)
technology. The method of text mining adopted by this paper is not based
on aggregate values such as mainstream current weighing text analysis
but based on the distributed representation of words calculated by
machine learning (fasttext). Therefore, the basis of the analysis is not the
sum of the words in the text but the similarity using the distributed
representation of the word. Text mining based on distributed
representation is still an incomplete technology and it is not a fixed
method, it is a field where further development is expected in the future.
In this paper, we propose two analytical methods using this distributed
representation.
The method proposed by this paper is useful for business researchers,
also for practitioners, when planning and model change of products/
services, comparison with other company’s product services becomes
easier than ever, more detailed analysis.
書誌情報 桃山学院大学経済経営論集
en : ST.ANDREW'S UNIVERSITY ECONOMIC AND BUSINESS REVIEW

巻 59, 号 4, p. 101-122, 発行日 2018-02-20
出版者
出版者 桃山学院大学
ISSN
収録物識別子タイプ ISSN
収録物識別子 02869721
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00240555
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 14:23:48.088600
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3